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An Enhanced Decomposition Algorithm for

Multistage Stochastic Hydroelectric Scheduling

by

David P. Morton

Abstract

Handling uncertainty in natural inflow is an important part of a hydroelectric scheduling model. In a

stochastic programming formulation, natural inflow may be modeled as a random vector with known

distribution, but the size of the resulting mathematical program can be formidable. Decomposition-

based algorithms take advantage of special structure and provide an attractive approach to such prob-

lems. We develop an enhanced Benders decomposition algorithm for solving multistage stochastic

linear programs. The enhancements include warm start basis selection, preliminary cut generation,

the multicut procedure, and decision tree traversing strategies. Computational results are presented
for a collection of stochastic hydroelectric scheduling problems.
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1 Introduction

Hydroelectric scheduling is an important planning problem at The Pacific Gas and Electric Company.

Depending on hydrological conditions, PG&E's hydroelectric power plants generate roughly 10-20%

of the system's annual demand for electric energy. Other energy sources include gas-fired plants,

the Diablo Canyon nuclear plant, and imports from external sources; for simplicity, we collectively

refer to these as "thermal" energy sources. Thermal energy costing is complex, but for the purposes

of the model we describe in this paper, we assume a nonlinear convex thermal cost function. Given a

hydro generation schedule, this function provides the cost of operating the thermal system to satisfy

the remaining demand for energy. An important source of the thermal cost function's nonlinearity is

the different efficiencies of various thermal plants. Hydro units are attractive because they generate

energy at a very low variable cost and permit flexible scheduling since they can quickly ramp up to

full power. However, due to reservoir and generation capacities and seasonal variations in natural

inflow (via precipitation and snowmelt), they cannot be operated at full capacity year-round. The

scheduling of the hydroelectric system is further complicated because the volume of future natural

inflow into the system's reservoirs is uncertain. The objective of the model we describe is to operate

the hydro-thermal system with minimum expected cost for a two year planning horizon. Restated:

we wish to operate the hydro system so as to maximize expected savings from avoided thermal

generation costs. While we give an overview of the hydroelectric scheduling model and coordination

(with the thermal system) algorithm in §2, the reader is referred to Jacobs et al. [10] for a more

detailed description of the ongoing project at PG&E as well as for references to other approaches to

hydroelectric scheduling.

Solutions from hydroelectric scheduling models with deterministic natural inflow forecasts can be

unsatisfactory. Hydro generation decisions in such models are made under the incorrect assumption

that forecast levels of natural inflow are ensured in forthcoming months; if mean or median inflow

values are used, the resulting solutions may fail to hedge against dry inflow scenarios. As a result,

in a dry scenario, inefficient and costly thermal plants must be brought on line to satisfy demand

for electricity. On the other hand, a conservative strategy derived from a relatively dry forecast

may result in forced spills due to finite storage and generation capacities. These spills represent lost



potential energy and lost future cost savings. Stochastic programming formulations allow natural

inflow to be modeled as random parameters with known distribution, but the size of the resulting

mathematical programs can be formidable. Decomposition or L-shaped algorithms [3,13] provide an

attractive approach to such problems because they take advantage of special structure.

The aim of this paper is to present an enhanced decomposition algorithm for multistage stochas-

tic programs and to examine its performance on a set of hydroelectric scheduling problems. The

remainder of the paper is organized as follows. In §2 the hydroelectric scheduling module of the

stochastic hydro-thermal optimization problem is described; a collection of test problems is also de-

tailed. In §3 we briefly review Benders decomposition algorithm applied to multistage problems and

discuss valid cut generation. The empirical performance of several enhancements to the traditional

algorithm is presented in §4. In §5 we compare run-times of the enhanced decomposition algorithm

and direct linear programming optimizers; the paper is summarized in §6.

2 The Model

A hydrological basin may be viewed as a network consisting of a number of reservoirs (nodes) that

are interconnected by rivers, canals, and spillways (arcs); energy is generated as water flows through

powerhouses. Given marginal values of energy, we model an individual basin hydroelectric scheduling

problem as a T-stage stochastic linear program with recourse (SLP-T):

T
maximize E p'c' 4'

subject to -B-.t- zt- 1 + Atz-, b, 0 <- ' <tu', wt E Qt

SLP-T for t= 1,...,T

where B0 = 0.

The sample space for stage t is denoted O,, and a sample point (scenario) in Ot is denoted wt. A

stage t > 2 scenario, wt, has a unique stage t - 1 ancestor denoted a(wt), and a stage i < T scenario

has a set of descendant scenarios denoted A(wt). A, is an ms x nt matrix and the remaining matrices

and vectors are dimensioned to conform. A stage t realization, ý, (wt) = (ct', u",, b," ), is a vector in

RN", where N, = 2nt + mi. We assume a finite number of scenarios and a probability mass function

given by P{•, = 1(w1t)) = pý". For notational convenience, we have created a first stage sample
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space, tl1 that is a singleton set where ti(wl) represents the known state at the time decisions are

made in the first stage; clearly, p'X has value one. SLP-T has FT I mg[tQgI structural constraints

and ETI no If Il decision variables where Ilt I denotes the cardinality of 01,.

We may, nominally, regard At as the node-arc incidence matrix for the hydrological network.

The actual form of A, is more complex for several reasons. First, non-network side constraints

must be incorporated; e.g., decrees constrain the volume of water in a subset of the reservoirs to

a minimum level. Second, subperiod modeling is necessary to capture differences in peak and off-

peak values of energy. Third, stages contain different numbers of time periods depending on the

corresponding level of uncertainty in natural inflow. For example, summer months are relatively dry

and multiple time periods are incorporated in a single stage; the snowmelt season in the spring, on

the other hand, is a period of greater uncertainty and shorter time stages are required. In addition,

longer time stages are typically used in the later stages of the model.

In SLP-T, decisions occur and uncertainties unfold in the following manner. The first stage

hydro generation and storage decisions are made with distributional information on future data;

next, a specific scenario is revealed and second stage decisions are made knowing this data, the first

stage decision, and conditional probability distributions on future inflows ... The goal is to operate

the hydro basin with maximum expected benefit, in terms of avoided thermal generation cost, for

T time stages. The model has essentially three arc types: energy generation arcs, other spatial

water transport arcs, and "transition-in-time" arcs. The matrix Bt contains arcs of the third type

that are used to equate the amount of water left in a reservoir at the end of one stage with the

amount of water in the same reservoir at the beginning of the next stage. Generation, spill, and

reservoir capacities appear as simple bounds on the three arc types. Initial reservoir volumes are

contained in bl; subsequent b6, vectors contain the uncertain natural inflows. Energy generation arcs

have objective function coefficients that represent marginal values of energy in terms of dollars per

thousand acre foot; these values are stochastic and usually larger in drier natural inflow scenarios.

Other arcs typically have objective function coefficients of zero. In general, the stochastic parameters

exhibit interstage dependence. For instance, relatively large inflows at lower elevations in the winter

months are often coupled with a growing snowpack at higher elevations which will, in turn, lead
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to large inflows when melting occurs in the spring. Methods of dealing with finite horizon effects

include minimum final period reservoir storage requirements or a final period future value function;

both methods may involve scenario dependent constraints.

The individual basin programs described above are subproblems of a larger multistage stochastic

noihnear program. Hydro scheduling decisions must be made in a number of basins. The only

constraints linking the different basins are the load constraints; these require that at each possible

point in time, demand for energy be satisfied. The Dantzig-Wolfe decomposition principle may be

applied to create a nonlinear master problem that contains proposed hydro solutions, the demand

constraints, and the nonlinear thermal cost function. The linear subproblem separates into a sum of

independent subproblems by hydro basin of the form of SLP-T. The Dantzig-Wolfe master generates

scenario dependent marginal values of energy for the subproblems and the subproblems, in turn,

pass proposed hydro solutions to the master problem. We refer the reader to Eiselt, Pederzoli, and

Sandbloom [5] for a discussion of nonlinear Dantzig-Wolfe decomposition.

Name Size Dim Deterministic
Equivalent

Moke3.9 169 x 820, 337 x 1713, 673 x 3298 7 7237 x 28473
Ybsf3.9 319 x 1559, 637 x 3119, 1273 x 6239 12 13687 x 53489
Moke4.45 57 x 271, 113 x 548, 337 x 1713, 673 x 3298 7 35736 x 140656
Ybsf4.45 107 x 519, 213 x 1039, 637 x 3119, 1273 x 6239 12 68012 x 265836

Table 1: Test Problems

In §4, we examine the performance of an enhanced decomposition algorithm on a collection of

test problems that are preliminary versions of individual basin hydroelectric scheduling problems as

described above. The test problems are models with different time horizons, stage definitions, and

discretizations of natural inflow distributions. The models are based on two of the larger hydrological

basins in the PG&E system: Mokelumne (Moke) and Yuba-Bear-South Feather (Ybsf). In Table 1,

"Name" indicates the hydrological basin, the number of stages and number of scenarios; for example,

Moke3.9 is a three stage model of the Mokelumne basin with 1fl31 = 9. "Size" gives the row and

column dimensions of the Ag matrices for each stage. The dimension of the domain of the recourse

function is the number of large reservoirs in a basin; this value is denoted "Dim." "Deterministic

Equivalent" gives the row and column dimensions of the SLP-T formulation.
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3 Benders Decomposition and Valid Cut Generation

We may write SLP-2, in minimization form, as follows:

minimize { clz1 + E,,h(zI,w) 1,
AI:3  = 61 (1)
XI >0

where

h(zl,w) = minimize C2Z

subject to A2Z'2 = b' + Biz1  (2)
4 >0.

Note the simple upper bounds are not explicit; when this is the case, it may be assumed that they

have been included in the structural constraints.

Benders decomposition for SLP-2 (see Van Slyke and Wets [13]) is a resource directed decompo-

sition. A first stage decision is passed to the right-hand-sides of the second stage recourse problems

(2) which then act optimally under each scenario w. Supports of the piecewise linear convex recourse

function, E,h(zI,w), called cuts, are derived from the dual of (2) and are subsequently passed back

to the first stage master problem and the process repeats. Under the assumption that second stage

"infeasibilities" are modeled by a penalty function, a forward pass of the algorithm generates a feasi-

ble decision and hence an upper bound on the optimal objective function value. We can also obtain

a lower bound on the optimal objective function value via the master program's objective function

value: the cuts collected so far provide an outer linearization of the recourse function. The extension

of this procedure to SLP-T can be viewed as follows. SLP-T is first decomposed into two stages:

stage 1 and stage 2, ... , T. After the first stage problem passes resources to the right-hand-sides

of the stage 2 subproblems, there are 10l21 liilear programs to solve. Each of these linear programs

is solved via decomposition into two stages: stage 2 and stage 3,...,T, and so on. This nested

method is the "traditional" nested Benders decomposition approach to multistage stochastic linear

programming (see Birge [3]); a more formal description is provided in §4.4.

We now provide conditions under which valid cuts can be generated; these results prove useful

in developing some of the enhancements to the traditional algorithm described in J4. A valid cut is

defined to be a cut that lies below the recourse function. Lemmas 1 and 2, state that dual feasible

vectors generate valid cuts for SLP-2 and SLP-T, respectively.
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Lemma 1 Consider SLP-2 with Jll = K. If (i.. rK) are dual feasible for the second stage

subproblems then these dual vectors generate a valid cut for the first stage master program.

Proof

Let I"' = : rA 2 _< c"2) denote the dual feasible region of (2). By hypothesis, e E R'I V w E ft;

thus

Iw (b2 +•- BIzi) : h(xl,w) = maximize To (b'2 + Bjzx) V zI.
10o E 1lw

By taking expectations we see Gz 1 + g is a valid cut where G = E,,ifr-BI and g = E,, *b'O. N

With the exception of the final stage, the difference in the multistage setting is that subproblems

generating cuts for their ancestors contain their own cuts. Lemma I implies dual feasible vectors to

the stage T subproblems generate valid cuts for their stage T- 1 ancestors, but a new result is needed

for the general case. Lemma 2 ensures that if the stage t (2 < t < T) subproblems contain valid

cuts then they will, given dual feasible vectors, generate valid cuts for their stage t - 1 ancestors.

The stage t (I < t < T) subproblem under scenario wl, denoted sub(wi), has the following form:

minimize 4' t' + 01

subject to Atz' = b"' + Bt- 1 -(t-Isubllw,) + 1 (3)
sulwg)-Gc,'x" + e 0~" > g"'

X"' > 0.

The rows of the matrix G-' contain cut gradients; the elements of the vector g"' are cut intercepts;

and e denotes the vector of all l's. As the algorithm proceeds, the row dimension of these quantities

will grow.

Lemma 2 Suppose IA(wg)I = K, 1 < t < T- 2, and the descendants of sub(wi) contain valid cuts.

If t+ )+], -, , are dual feasible vectors for the descendants of sub(w,) then these

dual vectors generate a valid cut for sub(wt).

Proof

Denote the value of subproblem (3) by Ts-&(xI-.,wilGI,g•"). Let I ,+ be a set of valid

cuts and define ft(xt,wt+I) = Ft(zt,wt+i,1+,+ 7,t+, ). For each wt+i E A(wt) there exists a

finite set of cuts, denoted by (17-+G' ,g+1'), such that the conditional stage t + 2 recourse function
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is completely specified; let ht(zt,w,+i) - Y,(:,,wo,+ -'+j-')+ Now suppose (4'+ ')"is

dual feasible for the program corresponding to f,(zt,w,+i). Then

t+1 (bw-,+' + Btzl) + 6"+ ' + f,(z,,w,+ 1 ) 5 hg(z,,wg+1 ) V zt. (4)

The left hand inequality is immediate by writing the program corresponding to fg(zs,w,+i) in its

dual form. The right hand inequality follows as the cut constraints in ft(zg,w•+1) are dominated by

the cuts of hg(zg,w,+i). The desired result is obtained by multiplying (4) by pA;,"" and summing

over all wt+1 E A(wt).E

4 The Enhanced Decomposition Algorithm

In this section, four enhancements to the traditional nested Benders algorithm are presented: Warm

start techniques obtain "good" initial basic feasible solutions for subproblems based on optimal basis

information from previous subproblem solutions. Advanced start procedures generate preliminary

cuts prior to initiating a formal Benders algorithm. The multacut Benders decomposition algorithm

returns one cut for each descendant of a particular subproblem instead of a single aggregate cut.

Tree traversing strategies prescribe the order in which subproblems of the decision tree are solved.

The enhanced algorithm is implemented in FORTRAN 77, and the computational results we

present are from a Hewlett Packard 9000/750 workstation. The algorithm uses NETSIDE, a special

purpose code that solves the minimum cost flow network problem with side constraints, developed

by Kennington and Farhangian as the subproblem solver. NETSIDE is based on a specialization of

the primal simplex method (see Kennington and Helgason [11] and Barr et al. [2]); in our setting,

the set of side constraints includes Benders cuts.

The performance of a particular algorithmic enhancement will be analyzed with respect to a base

case strategy which is the strategy we recommend. Thus, we evaluate the marginal effect of each

enhancement. The base case strategy and its performance on the four test problems is summarized

in Tables 2 and 3; the details are presented in the respective subsections that follow. All problems

are solved to within an objective function tolerance of 0.01%. Reported CPU times exclude input

and output operations. The # subproblems column of Table 3 gives the number of subproblems

solved in each stage during the course of the algorithm.
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Warm Start Candidate list of length 20 until relative error < 5%
Advanced Start Prespecified Decisions Method with shared cuts
Muiticut Yes
Tree Traversing Strategy Fastpass

Table 2: Base Case Strategy

Name # subproblems # iterations CPU (sc.)
Moke3.9 10-59-99 10 55.4
Ybsf3.9 7-47-72 7 119.8
Moke4.45 10-64-274-459 10 221.4
Ybsf4.45 8-83-205-369 8 404.0

[Average f N/A 8.8 1 200.2

Table 3: Base Case Strategy Performance

4.1 Warm Start

Similar subproblems are repeatedly solved during the course of a decomposition procedure. Tech-

niques that take advantage of optimal basis information from previous subproblem solutions are

critical for developing efficient algorithms. Wets [14] and Garstka and Rutenberg [61 have proposed

bunching and sifting techniques, respectively for solving a large number of similar linear programs.

The sifting method, however, requires component-wise independence of the right-hand-side and de-

terministic objective function coefficients; our test problems violate these requirements. Moreover

in our experiments there were a low number of "repeat" optimal bases which seemed to indicate

bunching might not occur. While the primary computational challenge in the two-stage problem

lies in the solution of a large number of similar second stage problems each iteration, the greatest

potential for computational savings in a multistage problem, with only a few stochastic branches

each stage, rests in an ability to select good initial bases for each subproblem.

We propose a warm start technique in which initial bases are selected from a candidate list until

the relative error is sufficiently small. In subsequent iterations, subproblems are initialized with

the basis from their previous optimal solution. The columns of a basic solution of subproblem (3)

can be partitioned into a retwork component and a side constraint component; see Kennington and

Helgason [11]. The heuristic used to select the best basis from the candidate list for a particular

8



subproblem proceeds as follows:

(i) Calculate network flows from the network component of each candidate list basis.

(ii) Calculate solutions for the entire subproblem based on each network flow solution.

(iii) Determine the objective function value of each solution.

(iv) Select the candidate list basis that has the minimum corresponding objective function value.

Step (i) can be performed quickly due to the tree structure of the network basis. In step (ii)

we substitute the solution from (i) into the side constraints and generate a feasible solution from

slack, surplus, artificial, and future cost variables. The "best" basis is then determined from the

objective function value of each solution. Note that the value calculated in (iii) is only an estimate

of the actual objective function value that the basis will yield since the side constraint component of

the basis is not considered. We ignore this component due to the computational effort required for

refactorization and the fact that the network constitutes most of the subproblem. Minimal storage

is required for each basis: arc indices within a pointer structure, a list of upper bound arc indices

for the network, and a list of column indices for the side constraints. See Jacobs [9] for the details of

the NETSIDE basis insertion procedure. Warm start parameters that the user must select are the

maximum size of the candidate lists and the relative error at which the method switches from the

candidate list heuristic to simply reusing the previous optimal basis for each subproblem; reasonable

values for these parameters are suggested below in the computational results discussion.

Computational Results

Columns 2-4 of Table 4 detail the performance of the algorithm when each subproblem solution

begins with an all-artificial basis. Similarly, columns 5-7 show the empirical results of the strategy

in which the candidate list heuristic is not used and we simply recall the previous optimal basis for

each subproblem; if such a basis does not exist (because a particular subproblem has not yet been

solved) then the optimal basis of another subproblem from the same stage is used. The "x increase"

column is defined as T/Tb, and the "% increase" column as (T - Tbc)/Tb, • 100. Tb, denotes the

running time of the base case strategy and T the modified strategy; e.g., the base case with no warm

start. If the % increase column is 20 then it is to be read: "the current strategy's running time is

20% longer than the running time of the base case strategy." Table 4 reveals the dramatic impact
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of warm starts and also indicates that substantial computational savings can result from using the

heuristic to select good bases early in the algorithm. The values of 5% for the switch over tolerance

and 20 for the candidate list length (see Table 2) were determined by varying these parameters on

a wider variety of test problems using the base case strategy with and without an advanced start.

Name No Warm Start Recall Previous Basis
iter. CPU (sec.) x increase iter. CPU (sec.) % increase

Moke3.9 13 909.1 16.4 12 75.0 35.4
Ybsf3.9 8 1973.3 16.5 8 163.4 36.4
Moke4.45 11 3793.4 17.1 11 263.4 19.0
Ybsf4.45 11 14267.8 35.3 9 526.1 30.2

Average I 10.75 5253.9 21.3 10 257.0 30.3

Table 4: Warm Start Procedures

4.2 Advanced Start

A Benders decomposition algorithm initiated with no preliminary cuts generates myopic first it-

eration decisions and "extreme" decisions in the early iterations. The idea behind an advanced

start method is to calculate preliminary cuts to help guide the early iterations of the algorithm. A

technique utilized by Infanger [8] involves first solving, by Benders decomposition, the much smaller

expected value problem in which the stochastic parameters of SLP-T are replaced by their population

means. The cuts produced in the process are valid for SLP-T if the stochastic parameters exhibit

interstage independence and appear only in B, and bg; this claim is easily verified via Lemmas I

and 2. However, in the stochastic hydroelectric scheduling problems the objective function coeffi-

cients are random and the stochastic parameters are temporally correlated; thus the expected value

method is not applicable and we seek an alternate approach.

A "prespecified decisions" method for computing preliminary cuts requires, for each stage f < T,

a collection of decision vectors: {i') : i = 1,..., N1}. The basic idea is to generate preliminary cuts

by solving subproblems with right-hand-sides of the form: B._ 1 i(2- + b&". A naive implementation

involves solving the descendants of each scenario tree node at each of the prespecified decisions and

computing the corresponding cuts. In the streamlined approach described in this section, we select

a single scenario Cal on each stage and solve the descendants of scenario kj-I and then pass a cut

10



back not only to sub(c,.-,) but also to all its stage t - 1 neighbors via the dual sharnng formula

described below; Figure 1 summarizes the method. In a symmetric four stage, 45 scenario problem

with 1, 3, 15, and 45 scenarios on each stage and Nt = 3, the number of subproblems solved in the

streamlined method is and 33 while the naive method is 189.

define ,wt,,t = 1,...,T- 1
do t = T downto 2

do i = I to Nt-1
do w, E A(t-l)

form RHS of sub(wi): t B.-..(1 21 + bV"
solve sub(wt)

enddo
pass cut to sub(wt- 1 ) V wt-i E Ot-i

enddo
enddo

Figure 1: Prespecified Decisions Method - Sharing Duals

The only relevant components of the prespecified decision vectors are ones that contribute to

the product B,-.. 1 ; this corresponds to end-of-stage reservoir storage volumes in the hydro

scheduling problems. Reservoirs have natural lower and upper storage bounds, and in the absence

of additional information (e.g., historical storage levels or values from prior optimizations), the

prespecified decisions are defined as percentiles between the upper and lower bounds. In particular,

we use three prespecified vectors at 20%, 50%, and 80%, and we define Cbt = rKt/21 where flt =

f 1, ... , K,) and where the ceiling function r.1 gives the smallest integer greater than or equal to

its argument. The order of cut computation is relevant; for example, in a three stage problem all

preliminary cuts are passed to the second stage prior to passing any cuts to the first stage. In this

way, the maximum possible amount of information is subsequently passed to the first stage.

The Dual Sharing Formula

The dual of sub(wt) (see program (3)) with explicit simple bounds may be written:

maximize iw" (b-" + Bt,,z?_ _)) + ca"g•" - 0 Wuj

subject to ir"A, - etI"G 't - pj" _5

eTctwI = 1
a" > 0, P"" > 0.

In describing the dual sharing formula, super and subscripts are suppressed for clarity. Suppose

we have solved a stage t subproblem with data (d, A) and obtained optimal dual prices (*, &,).

I1



Given another stage t subproblem with data (c,G,A) feasible dual prices can be generated directly

from (*,&,Ai) via

(1ap = (f ,[* G- (5))

Dual feasibility of (r, a, p) is easily verified by substitution. The [v]+ notation means take the

positive part of the vector v, component-wise. We refer to (5) as the dual sharing formula. Note (5)

is also valid for stage T subproblems when the (vacuous) cut gradient matrix and associated dual

variables are dropped.

Suppose we have solved the descendants of sub(C~t); using the corresponding optimal dual vari-

ables, the dual sharing formula may be applied to compute a valid cut for sub(w'). To compute this

cut, we match elements of A(wýt) and A(w•). (Another possibility is to select the dual vectors that

produce the strongest cut at a particular stage t decision.) By Lemmas 1 and 2 these feasible dual

vectors generate valid cuts. Note that a cut generated by applying (5) can be weak; the extreme case

is a positive price on an infinite simple bound. In the hydroelectric scheduling problems, however,

the only arcs that can have nonzero shared p's have natural finite bounds.

Computational Results

Columns 2-4 of Table 5 detail the performance of the base case strategy with no advanced start and

columns 5-7 show the performance when we use the naive advanced start without the dual sharing

formula. In selecting an advanced start procedure, one must balance the computational benefit

that the preliminary cuts yield with the cost of generating the cuts. Table 5 shows the base case

strategy of solving only a subset of subproblems on each stage and utilizing the dual sharing formula

provides an attractive advanced start. The average relative error after the first iteration for the

base case strategy and advanced start strategy with no sharing is 6.8% and 6.1%, respectively, and

the corresponding average CPU times for the first iteration are 67.6 sec. and 117.8 sec. Thus the

slower method produces slightly stronger cuts, but the empirical results indicate the computational

expense is too high. The table reveals, however, the naive advanced start procedure is preferable

to none at all, and that the advanced start procedures provide greater computational savings in the

four stage problems than in the three stage problems.
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Name No Advanced Start Naive Advanced Start
iter. CPU (sec.) % increase iter. CPU (sec.) % increase

Moke3.9 15 68.4 23.5 i10 60.0 8.3
Ybsf3.9 9 118.5 -1.1 7 129.1 7.8
Moke4.45 13 318.9 44.0 9 255.3 15.3
Ybsf4.45 13 614.7 52.2 9 553.1 36.9
Average 12.51 280.1 29.7 i 8.8 249.4 j 17.1

Table 5: Advanced Start Procedures

4.3 Multicut Algorithms

Birge and Louveaux [4] introduced the multicut L-shaped algorithm for SLP-2 (1). The traditional

aggregate cut algorithm creates a master program by replacing 2-w'fn pw h(xl,w) in program (1) by

0 and sequentially adding cuts of the form 0 > (•E pwlr-B 1 ) t + Z.,E", peTs.b- each iteration.

The multicut version instead replaces h(zl,w) by 0- for all w E fQ and each iteration appends 1f01

cuts of the form 0w > (v"Bi)zi x + x-b-. When compared with the aggregate cut algorithm, the

multicut algorithm has the disadvantage of requiring more decision variables; similarly, after a given

number of iterations, it also maintains a larger number of cut constraints in the master program.

This, however, is countered by the advantage of increased resolution of the recourse function. In

practice we expect multicut algorithms will typically take fewer iterations than their aggregate cut

counterparts. (Birge and Louveaux [4], however, present a counter example showing this is not always

the case.) The multicut algorithm extends to the multistage setting in a straightforward fashion.

Each descendant scenario passes back a cut to its ancestor and the ancestor objective function has

the form:

Zw, *a ta

Other generalizations of the multicut algorithm are possible; the descendants can be partitioned

into disjoint sets and a "0" defined for each set. In the multicut algorithm described above, each set

of the partition is a singleton, and the aggregate cut algorithm is the special case where the only

set of the partition is A(wt) itself. A coarse partition version of the multicut algorithm should be

particularly attractive when the number of scenarios is large. The other enhan. iments discussed in

this paper can run in either aggregate cut or multicut mode.
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Computational Results

Name # iterations CPU (sec.) % increase

Moke3.9 22 107.3 93.7
Ybsf3.9 13 146.3 22.1
Moke4.45 18 318.1 43.7
Ybsf4.45 17 662.0 63.9

Average 17.5 308.4 I 55.9

Table 6: Single Cut

Table 6 details the performance of the strategy in which the multicut method is replaced by the

single cut procedure in the base case strategy. The average number of iterations in the multicut

procedure is about half that of the single cut method. However, due to the quality of the warm

start procedure the corresponding running times are not halved. Nevertheless, Table 6 shows the

multicut method yields a significant computational advantage. The relative error as a function of

CPU time is plotted in Figure 2 for three strategies on test problem Moke4.45. Note (i) the faster

convergence of the multicut algorithm, (ii) the additional computational effort but improved initial

relative error of the advanced start procedure, and (iii) the effect of the warm start on the time per

iteration as the algorithm proceeds.

n base case

0 base case - single cut
D" n base case - no advanced start

___ __C

U 

0

0 50 100 150 200 250 300 350
CPU time (sec.)

Figure 2: Relative error vs. CPU time - Moke4.45
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4.4 Tree Traversing Strategies

For brevity, we refer to the nested Benders decomposition algorithm described in 13 as the shuffle tree

traversing strategy. Abrahanson [1] and Wittrock [15] developed strategies other than shuffle for

deterministic multistage linear programs; we consider two of these: fastpass and cautious. Gassmann

[7] tested shuffle, fasipass, and cautious in the stochastic setting. Abrahamson, Wittrock, and

Gassmann found fastpass to be an effective strategy. In addition to these three strategies, we

present two new classes of tree traversing strategies.

The two extreme strategies are shuffle and cautious. Shuffle only goes backward up the tree if it

cannot go forward; i.e., it solves all the stage t+ 1 .... ,T subproblems explicitly (within a tolerance)

prior to passing cuts back to stage t. On the other hand, cautious never goes forward down the tree

unless all cuts that would be passed back to stage t - 1 are redundant. Fastpass is a strategy "half-

way" between shuffle and cautious. We introduce the c-shuffle and c-cautious strategies: c-shuffle is

a strategy that is in between shuffle and fastpass; it is less hesitant to go backward up the tree than

the former but more hesitant than the latter; c-cautious is similarly in between cautious and fastpass.

As c increases both c-strategies become more like Jastpass. As ( shrinks, the two (-strategies more

closely mimic their (non c) counterparts.

The primary concern with shuffle is it may spend too long solving, for example, the stage 2,..., T

subproblems with respect to a poor first stage decision. The quality of the information passed up

the tree is high (the cuts are supports of the recourse function), but too much effort may be spent

computing the cuts. Cautious, on the other hand, may spend too much effort generating stage t - 1

cuts when the stage t cuts do not yet give a good approximation of the expected costs to be incurred

in stages t + 1, ... , T. The "best" tree traversing strategy will properly balance the quality of the cuts

(and hence the lower bound) with the computational effort required to generate them. The search

for this balance motivates considering strategies that range between shuffle and cautious. Fastpass

is one such strategy; the c-strategies enable us to more fully investigate intermediate strategies.

Tree Traversing Theorem

In shuffle, a subproblem only receives a cut from its descendants after each descendant subproblem is

solved with respect to its descendants. In this context, solved means the upper and lower bounds on
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the optimal objective function value coincide. The tree traversing theorem states that a cut passed

back to a subproblem "prematurely" (i.e., while the gaps in descendant objective function bounds

are still positive) is a valid cut.

Theorem 3 A cut passed back to sub(wt) when the subproblems, sub(wg+j), w,+1 E A(wt), are not

solved with respect to their descendants (due to insufficient cuts) ts a valhd cut.

Proof

This result follows directly from Lemma 1 and Lemma 2: The subproblems contain valid cuts, and

the dual variables associated with optimal solutions to the subproblems are dual feasible. U

In light of Theorem 3, one has a great deal of freedom in designing algorithms with respect to

the order in which the subproblems of the decision tree are solved. Our goal is to devise strategies

that allow us to solve large-scale multistage stochastic linear programs as quickly as possible.

Formal Strategy Definition

Absolute error and discrepancy are two useful concepts in formally defining the tree traversing

strategies. The absolute error, At (zx", w), for the stage t subproblem under scenario wt, i.e., sub(wt),

is

This expression is the difference between upper and lower bounds on the optimal objective function

value for sub(wt); note that it depends on sub(wt)'s right-hand-side and hence its ancestor's de-

cisions. The absolute error for the stage T subproblems is zero because these linear programs are

solved directly. The A notation (see §2) may also be applied to a set: A(S) = U,e$ A(s); A" means

apply A n times, e.g., A 2 (wt) = A(A(WW)).

Scott [12] defined discrepancy, Vt, in the deterministic case. We extend the notion of discrepancy

to the stochastic setting.

• (Z * )= | p [ ci ' z'+l T; + e J

is the discrepancy for sub(wt). The second term in the discrepancy, 0j", represents sub(wt)'s estimate

of the expected cost to be incurred by its descendants in stages t+ 1,..., T. The first term represents
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the conditional expected value of the cost realized in stage t + 1 plus the stage t + 1 estimate of the

expected cost in stages t + 2,... ,T. The discrepancy for any stage T subproblem is zero.

We now define two subroutines: forward(u, v) and backward(v, u). The former sweeps forward

from stage u to stage v. It first forms the right-hand--sides of the appropriate stage u subproblems

and solves them, and then it forms the right-hand-sides of the appropriate stage u + 1 subproblems

and solves them ... until it has solved all the appropriate stage v subproblems. On the other hand,

backward(v, u) first passes cuts to the appropriate stage v subproblems and solves them, and then

passes cuts back to the appropriate stage v - 1 subproblems and solves them ... until it has passed

cuts back to the appropriate stage u subproblems (it does not solve them). In the execution of

forward(u, v) and backward(v, u), it is not always necessary to solve every subproblem that we might

address. For example, in subroutine forward(u, v), some of the stage u subproblems (and therefore its

descendants) might have a sufficiently small absolute error, and in subroutine backward(v, u), some

of the stage v subproblems (and possibly its ancestors) might have a sufficiently small discrepancy.

For declaring specific subproblems temporarily "solved" in this fashion, we use discrepancies in the

cautious strategies and absolute errors in the shuffle and fastpass strategies.

Because the Benders cuts form an outer linearization of the recourse function, Dt(zr',w,) > 0.

Furthermore, V 1t(x,w 1) = 0 implies the cut that would be passed to sub(wi) is redundant. Two

more useful facts relating absolute error and discrepancy are:

,E• + E..At(z'1,wt) - Eo,.1 At+1 ( wt,+1 ) (6)

T-iE = .V~"w) (7)
t=1

When .A1(x1,w1) < toter. min(IUI, ILI), SLP-T is declared to be solved where toler is a prespecified

tolerance. U and L denote the upper and lower bounds on the optimal objective function value

that the decomposition algorithm continually updates. The definitions of sufficiently small expected

absolute error and sufficiently small expected discrepancy used in the tree traversing strategies are

motivated by (6) and (7). The cautious and t-cautious strategies begin with one iteration of fastpass

so initial upper and lower bounds on the optimal objective function value may be defined.
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(1) fastpaus

step 0 define toter; set iter = I
step I forward(l,T)
step 2 if A,(zx,w) < toler, min(JU1, ILI) then stop: optimal solution at hand
step 3 backwarvd(T - 1, 1); iter = iter + I
step 4 go to step 1

(2) shuffle

step 0 define toter; set iter = 1, t = 1
step 1 forward(t, T)
step 2 if A,1(xi,wi) _5 toler- min(IVI, ILI) then stop: optimal solution at hand
step 3 t = max {i : E.A,(z",w,) > 7-- -toler. min(IUl, ILI))
step 4 backvard(t, t)
step 5 if t= I then iter=iter+I
step 6 go to step I

(3) cautious

step 0 define toter; set iter = 1,11 = 1, t2 = 2
step 1 apply one iteration of the fastpass algorithm; iter = iter + I
step 2 forward(ti, t2;)
step 3 if 23 T then

iter = iter + 1;
if AI(xz,wi) 5< toter, min(IUI, ILI) then stop: optimal solution at hand

step 4 if.E.,, 2  D 2-< min(IUI, ILl) then
tl =t2+1;t23 tl

else
backward(t2 - 1, 1);
ti = 1; t2 = 2

step 5 go to step 2

(4) c-shuffle

step 0 define toter, c; set iter = 1, t I
step 1 forward(t, T)
step 2 if A 1 (xi,wi) :_ toter min(IUI, ILl) then stop: optimal solution at hand

step 3 t = max {maz {i : E,.,.A,(x',wi,) > --_ .c. min(JUl, ILI)}, I}
step 4 backward(T- 1, t)
step5 if t = I then iter = iter+ 1
step 6 go to step I

(5) C-cautious

step 0 define toler, c; set iter = 1, t1 = 1, t2 = 2
step 1 apply one iteration of the fastpass algorithm; iter = iter + 1
step 2 jorwavd(i, t2 )
step3 if t2 = T then

iter = iter + 1;
if AI(xi, wi) < toter, min(IUI, ILl) then stop: optimal solution at hand

step 4 if E,,,-_P-2-i(Zwt2',wL2 -1) < yr'- " min(lUI, ILI) and 11 5 T - I then
tl = t2 + 1; t = tl

else
backward(t2 - 1, 1);
93 = 1; t3 = 2

step 5 go to step 2
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Computational Results

Table 7 restates the base case (fastpass) strategy's results for convenient reference. Tables 8 and 9

use "x increase" with respect to fastpass as the performance measure; if this ratio is less than 1.0,

the strategy outperforms fastpass on that particular problem. By examining the # Subs columns in

Tables 7 and 8 one can contrast the distribution of computing effort per stage for three strategies.

Name fastpass
CPU (sec.) iter. # Subs

Moke3.9 55.4 10 10-59-99
Ybsf3.9 119.8 7 7-47-72
Moke4.45 221.4 10 10-64-274-459
Ybsf4.45 404.0 8 8-83-205-369

Table 7: Base Case Strategy - fasipass

Name cautious Ishuffle
x increase iter. # Subs x increase iter. # Subs

Moke3.9 0.92 7 19-82-72 1.08 7 7-51-135

Ybsf3.9 1.03 6 21-86-63 1.21 6 6-45-117

Moke4.45 1.06 8 27-140-449-369 2.10 4 4-40-296-852
Ybsf4.45 1.00 6 29-202-274-279 _ 2.18 8 8-71-263-771

Table 8: cautious and shuffle

In Table 9 the "x increase" column is the average of the CPU ratios for the four test problems. This

value is displayed for some specific values of c in the c-cautious and (-shuffle strategies.

c-cautious c-shuffle
C x increase C x increase

0.0001 1.00 0.0001 1.64
0.0004 0.98 0.0004 1.52
0.0016 0.97 0.0016 1.32
0.0064 0.95 0.0064 1.16
0.0256 1.06 0.0256 1.08
0.1024 1.01 0.1024 0.96
0.4096 1.01 0.4096 1.00

Table 9: c-cautious and c-shuffle

The computational results indicate the fastpass, cautious, and c-cautious strategies perform com-

parably and outperform shuffle and e-shuffle. It is only as e becomes large (and hence c-shuffle
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approaches fastpass) that t-shuffle performs comparably. It is interesting to note how little the

e-cautious running times change as e varies. An c.caultous strategy seems appealing in a multistage

problem (especially with discounting) where there is a desire to avoid the computationally expensive

later stages. In these problems, however, there was not a significant difference between the three and

four stage problems for the cautious (also (-cautious) strategies. On the other hand, the shuffle (also

c-shuffle) strategy's performance is significantly worse on the four stage problems. As one might

expect, the "extreme" strategies' performance deteriorates when the advanced start procedure is

removed; the average CPU ratios of cautious and shuffle to fastpass in this case are 1.13 and 2.07,

respectively.

5 Direct LP Optimizers

The performance of the enhanced decomposition algorithm (i.e., the base case) and general LP

optimizers on an enlarged set of test problems is summarized in Table 10. These eight problems are

based on the Mokelumne and Yuba-Bear-South Feather river basin models with 1, 9, 27, and 45

scenarios. We use the "x increase" measure with respect to the base case for three other LP solution

strategies: (i) the primal-dual predictor-corrector interior point algorithm as implemented in IBM's

OSL Release 2; (ii) this same interior point algorithm followed by the simplex method to generate an

extreme point solution; (iii) the primal simplex method as implemented in CPLEX 2.0. The results

show that on single scenario problems, the decomposition algorithm is outperformed by general LP

optimizers, but as the number of scenarios grows, the decomposition algorithm is preferable.

The decomposition algorithm terminates when the relative error is less than 10-1. The same

duality gap tolerance was used in both interior point solution strategies; all tests were performed

on a Hewlett Packard 9000/750 workstation. Due to memory limitations (OSL's dspace array was

allocated 64 Mb) we were unable to solve the largest (Ybsf4.45) problem via the interior point

strategies. Recall (§2) that the stochastic hydro scheduling problems are subproblems in a larger

nonlinear Dantzig-Wolfe decomposition algorithm. Thus extreme solutions are desirable, and this is

why the corresponding time to generate an optimal extreme point solution (via the simplex method)

from the interior point solution is shown in Table 10.
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Name Base Int. Pt. Int. Pt. Simplex
Case -. Simplex
(sec.) x increase

Moke4.1 16.8 0.32 0.46 0.40
Moke4.9 85.0 1.00 2.41 6.31
Moke4.27 132.9 2.26 6.94 27.54
Moke4.45 221.4 3.68 11.37 47.18
Ybsf4.1 48.1 0.23 0.42 0.59
Ybsf4.9 177.3 1.12 2.94 16.04
Ybsf4.27 252.9 2.15 14.84 61.53
Ybsf4.45 404.0 N/A N/A 100.20

Table 10: Comparison with Direct LP Optimizers

6 Summary

We have described a number of enhancements to the nested Benders decomposition algorithm for

multistage stochastic linear programming. The enhanced algorithm is a small, but important part

of an ongoing research and development project at The Pacific Gas and Electric Company; see

Jacobs et al. [10] for a more detailed description of the project. The performance of the algo-

rithm was examined on a collection of multistage stochastic hydroelectric scheduling problems. The

computational results indicated the single most important enhancement is a warm start technique

which utilizes optimal basis information from previous subproblem solutions. We also described a

streamlined advanced start procedure that generates preliminary cuts to help guide the early iter-

ations of the decomposition algorithm; this enhancement provided additional speedup over naive

implementations. We found the multicut method due to Birge and Louveaux [4] also yielded com-

putational savings over its single cut counterpart. Consistent with earlier findings of Abrahamson

[1] and Wittrock [15] (in the deterministic case) and Gassmann [7] (in the stochastic case) we found

that the fastpass tree traversing strategy performed well. However, a new class of e-cautious tree

traversing strategies produced comparable results to fastpass; further investigation of this class of

strategies may be warranted for problems with many stages. Finally, we showed that taking advan-

tage of the problem's special structure through the enhanced decomposition algorithm provides a

computationally attractive alternative to direct LP optimizers on medi,'ia to large-size problems.
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